Topic 0 – Introduction

Martin Kocher
University of Munich

Course in Behavioral and Experimental Economics
A hitchhiker’s guide through behavioral and experimental econ I

The course focuses on how psychological insights and experimental methods have been influencing economic thinking. We will discuss several selected topics in microeconomics and public economics, most of which involve situations with strategic interaction.

- Aims
- Methods
- Grading
- Prerequisites
A hitchhiker’s guide through behavioral and experimental econ II

Topics:
- Introduction, methodology
- Bargaining games
- Social preferences
- Cooperation
- Individual decision-making
- Laboratory, programming, statistics
- Guessing game and learning
- Auctions
- Team decision-making
- Self-control (and neuro-economics)
A hitchhiker’s guide through behavioral and experimental econ III

Moi

Martin Kocher
Department of Economics
University of Munich
Geschwister-Scholl-Platz 1
D-80539 Munich
Tel:
e-mail: martin.kocher@lrz.uni-muenchen.de
Office hours: anytime
http://www.experimentalforschung.vwl.uni-muenchen.de/lehre/akt_lehrprogramm/b_e_economics/index.html

(c) M. Kocher and M. Sutter
A hitchhiker’s guide through behavioral and experimental econ IV

- Presentations
- Participation in classes (supposed to be both a lecture as well as a reading group style)
- Final exam (date, content)
- Literature list
- How to prepare for classes

EE: experimental economics/economist
BE: behavioral economics/economist
The starting point I

„Economics unfortunately cannot perform the controlled experiments of chemists or biologists because [it] cannot easily control other important factors. Like astronomers or meteorologists, [it] generally must be content largely to observe.“

[Samuelson and Nordhaus (1985), Economics]
The starting point II

- Experimental versus non-experimental sciences: physics and chemistry versus meteorology and astronomy.

- Introduction of experimental methods to former non-experimental sciences: e.g. Galileo Galilei and Gregor Mendel
An introduction to the ‘villain’

- Unbounded rationality (e.g., common knowledge)
- Pure self-interest
- Complete self-control
- Fixed preferences and variable restrictions (De gustibus non est disputandum)

... homo oeconomicus
What are the ‘basic’ principles of economics?

http://www.youtube.com/watch?v=VP8UGjECt4
Example for an ‘overkill’ assumption: common knowledge of rationality

Something is ‘common knowledge’ if not only
I and you know it, but also
if I know that you know it and you know that I know it; and
if I know that you know that I know it and you know that I
know that you know it; and...
each sentence in this form in any arbitrary length is true.

More informal: Something is common knowledge if all people
can see it publicly, meaning that I see it, you see it, I see that
you see it etc. *ad infinitum.*
Example for an ‘overkill’ assumption: common knowledge of rationality II

Common knowledge is a typical ‘overkill’ assumption that can often be relaxed in game-theoretic models. But sometimes it is crucial.

Sometimes an information bit that is common knowledge has other implications than a information bit that, for instance, is only known by everybody.

Example: Assume that there are 100 people sitting in a circle and each person is either wearing a red or a blue hat. Nobody knows the color of his or her hat – actually, all hats are red.
Example for an ‘overkill’ assumption: common knowledge of rationality III

The master of ceremony is in the middle of the room and announces: ’Every 60 seconds I will ring a bell. If you know at that time that you wear a red hat, then leave the room please.’

Nobody will every leave the room because ringing the bell does not add any information.

Now assume that the master of ceremony – before the announcement – explains in addition that at least one person is wearing a red hat.

This is not a new piece of information because every person can see that there are at least 99 red hats. Nonetheless the additional explanation changes the situation:
Example for an ‘overkill’ assumption: common knowledge of rationality IV

After 100 rings of the bell, all people leave the room. Why? Assume for the sake of simplicity that there are only 2 persons in the room. We both see that the other person is wearing a red hat, but we do not see the color of the own hat. We, therefore, know that there is at least one red hat. But only through the announcement of the master of ceremony this becomes common knowledge.

Common knowledge means that we both know that the other person knows it.

Ergo: Since you did not leave the room after the first ring (which had happened in case I would have been wearing a blue hat), I know that I am wearing a red hat. The same rationale applies to you, so that we both leave the room after the second ring of the bell.
Example for an ‘overkill’ assumption: common knowledge of rationality V

In the 3-person case we both see that the third person is wearing a red hat. We both know also that the third person knows that there is at least one red hat. But until the additional explanation, this was not common knowledge, i.e. you did not know that I know that he/she knows it.

Now if your hat was blue, the third person and I would ignore you and like in the 2-person case leave the room after the second ring of the bell. Since this did not happen, the three of us leave after the third ring.

… Induction for any arbitrary group size n possible.
What is BE and EE?

- EE and BE are concerned with the empirical testing and modifications of traditional postulates in economics.
- Two historically distinct (but converging) traditions: (i) studies on human decision-making in cognitive psychology, and (ii) tests of predictions from economic theory through laboratory experiments.
- Most important starting point: Are potential deviations from the assumptions small or purely idiosyncratic or not? If not, BE and EE are important.
- Feedback channel: New experimental findings suggest new theories and new theories suggest new experiments.
Structure of approach

Deviations from the standard model in economics:
1. Deviations from rationality (bounded rationality)
2. Deviations from selfishness (fairness or social preferences)
3. Deviations from perfect self-control

The aim is to
1. Document systematic deviations (theory testing) and develop new theories
2. Analyze the structure of the deviations (e.g., socio-economic characteristics)

Workhorses (and interesting in itself): auctions, public goods games, bargaining games,…
Advances in terms of wider recognition

„Experimental Economics is an exciting new development.“
[Samuelson and Nordhaus (1992), Economics]
EE becoming mainstream

Nobel Prize to Vernon L. Smith ...
„... for having established laboratory experiments as a tool in empirical economic analysis, especially in the study of alternative market mechanisms.“

[Press release: The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2002]
BE becoming mainstream

Nobel Prize to Daniel Kahnemann ... „... for having integrated insights from psychological research into economic science, especially concerning human judgment and decision-making under uncertainty.“

[Press release: The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2002]
EE Nobel prize for confirming theory

Funnily the Nobel prize was not awarded for what EE is well
know for now (documenting deviations from traditional
economics) but rather for confirming traditional theory.
- ‘What is important about Columbus’ discovery of America is not that it was the first, but that it was the last. After Columbus, America was never lost again.’ (Roth and Sotomayor, 1990).

- Difficult to speculate about the first experiment in economics: Bernoulli (1738) on the St. Petersburg paradox? What about the Greeks (hypothetical experiments)?
A brief history of (mainly) EE II

Early individual choice experiments (1930-1960):

- Thurstone (1931; indifference curve determination)
- Several papers testing expected utility theory (e.g. Allais, 1953) after Neumann and Morgenstern’s ‘Theory of Games and Economic Behavior’ (1944)
- 1950: The start of the ‘interactive’ period: the prisoner’s dilemma: Melvin Dresher and Merrill Flood (January 1950 at the Rand Corp.) ran the first experiments (independently and unpublished: Howard Raiffa); the story came later, namely from Tucker (1950)
A brief history of (mainly) EE III

- 1954: Kalisch, Milnor, Nash and Nering published a small-scale negotiation experiment which turned out to be important in terms of design questions: formalization of the interaction structure, one-shot vs. repeated interaction, fairness vs. game-theoretic predictions and monetary incentives – results provided mixed support for the theoretical predictions.

- IO: Chamberlin (1948) – pit market with hypothetical payoffs; Hoggatt (1959), Sauermann and Selten (1959, 1960) and Siegel and Fouraker (1960) – oligopoly experiments.
A brief history of (mainly) EE IV

- Siegel and Fouraker took some effort to ensure anonymity and discussed the issue of the curvature around the optimum.

1960s to the present:
- About a hundred experimental papers published in economics in the 60s.
- 1964: Becker, DeGroot and Marschak
- 1962: Smith testing robustness of Chamberlin (1948)
- Germany: Sauermann, Selten, Tietz
- U.S.A.: Vernon Smith and Charles Plott
- Further fragmentation of the field.
Foundations of BE I

- Edwards (1954) introduced decision-making as a research topic for psychologists
- Allais (1953) outlined a theory of choice under uncertainty (based on psychological methodology)
- Simon (1956) published an approach to information processing and decision-making (foundations of bounded rationality)
- Kahnemann/Tversky: boost to the field
- Kahnemann/Tversky (1979): highest citation count of all *Econometrica* articles
Foundations of BE II

- Extrinsic incentives shape economic behavior.
- Intrinsic incentives also shapes human behavior – introduced by BE
- Many important concepts of modern economics: perception (framing), mental models, emotions, attitudes, aspiration levels, memory of previous decisions etc.
- Distinction between generalized behavior and context-specific (adaptive) behavior
- More later on when we discuss the relevant topics
EEs vs. BEs

- BEs are methodological eclectics.
- EEs share methodological features to a much greater extent than is true of experiments conducted by psychologists.
- EEs’ roots lie mainly in market analysis and BEs’ roots lie mainly in individual decision-making.
- EEs prefer experiments with clear theoretic predictions from economics, while BEs have a stronger interest than EEs in more explorative kind of studies.

But the boundaries get more and more blurred.
The scientific process

Suggests, Modifies

Theory

Tests, Modifies

Empirics
Data sources

<table>
<thead>
<tr>
<th>Field</th>
<th>Happenstance</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Household consumption data</td>
<td>Different incentive mechanisms</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Discovery of penicillin</td>
<td>Laboratory public goods games</td>
</tr>
</tbody>
</table>
The huge advantage of experiments

- Under a controlled variation of independent variables (treatments) and
- A truly random assignment of experimental participants to treatments

it is possible to clearly and causally attribute differences in the behavior of the experimental groups to the differences in treatments.

Examples for the importance of causality: horse, Indian
Validity of experiments – the old discussion

- **Internal validity**: Do the data permit correct causal inferences? A matter of control, design and data analysis.

- **External validity**: Is it possible to generalize inferences from the experiment to the real world? Most of the concerns can be studied experimentally (parallelism).
Purposes of experiments

- Testing theory and (external validity or descriptive validity of the assumptions) and laying the foundations for theoretical improvements; distinguishing between theories or equilibrium selection
- Testing the boundaries of theory
- Exploring empirical regularities in areas without economic theory (heurism)
- Test-bed, wind tunnel for institutional designs
- Pedagogical use
- Consulting
Important principles of economic experiments I

- **Controlled economic environments** (including agents, institutions, information, (game-theoretic) interaction protocol)

- **Induced value theory** (Smith 1976) with three main ingredients: (i) monotonicity, (ii) salience, and (iii) dominance.
Induced value theory: monotonicity

Subjects must prefer more reward medium to less and must not become satiated. If $V(m,z)$ are a subject’s unobservable preferences over the reward medium (m) and everything else (z), then the monotonicity requirement implies:

$$\frac{\partial V(m,z)}{\partial m} > 0$$

Money as the standard reward medium.
The reward Δm received by a subject depends on the action of the subject (and those of other agents) as defined by the design (institutional rules) of the experiment. Fixed payments are not salient.

Payments in a pre-determined and fixed exchange rate for any point of profit earned are salient.
Induced value theory: dominance

Changes in subjects’ utility from the experiment come predominantly from the reward medium used, and other influences are negligible. Possible problems with dominance: experimenter demand effects, desire to win (gambling), social status (social distance) if not double blind (all difficult to observe components of z).
What can be controlled for in experiments?

- Preferences, motives, moods, expectations,…
- Restrictions, institutions
- Kind of presentation (frame)
- Experience, knowledge, learning
- Socio-economic, psychological and even physiological factors
Important principles of economic experiments II

- Anonymity of subjects
- No deception of subjects
- Replicability of experiments

These five principles (partly) distinguish economic experiments from survey studies and psychological experiments (the latter often lack monetary incentives, do not comply with induced value theory and naturally involve deception of subjects; also the focus may be different).
Be careful with results – a joke

Question: Are all odd numbers prime?

Answer of a mathematician: Let’s see … 3 is prime, 5 is prime, 7 is prime, and the rest follows by induction.

Answer of an experimental economist: Let’s see … 3 is prime, 5 is prime, 7 is prime, 9 is – oops experimental error, 11 is prime, 13 is prime,…

Answer of a partisan economist: Let’s see … 2 is prime, 4 is prime, 6 is prime,…
Group assignment

Before we proceed to more practical issues, here a short group assignment:

I suppose you have been reading papers on experiments in economics. Do you have any general questions regarding designs? Are there any issues that you consider worth a discussion? Do you have any (more specific) questions regarding designing an experiment that arose from reading a paper on experiments?

Please discuss those questions within your group and collect a few more controversial questions or questions that remained unanswered within your group.
An example

As a basis to discuss the up-coming practical issues:

Experimental design issues

- Examples for treatments and $m \times n$ factorial designs.
- ‘Within-subject’ and ‘between-subject’ designs.
- Repetition vs. one-shot interaction (avoid the ‘Groundhog Day’-phenomenon)
- ‘Single treatment’ vs. ‘paired treatment’
- Matching protocols and reputation (‘partner’, ‘stranger’, ‘perfect stranger’ matching)
- Order effects
- The concept of independent observations
- Controlling for social preferences and risk attitudes
Practical advice for running experiments I

- Pay in cash, pay privately and pay enough (how much?).
- Choose the appropriate subject pool.
- Ockham’s (Occam’s) razor: *Entia non sunt multiplicanda praeter necessitatem*. Choose the simplest possible environment that enables you to answer your research question. Different in psychology?

The character William of Baskerville in Eco’s ‘The Name of the Rose’ is partly based on the medieval scientist William of Ockham (who btw. died 1349/50 in Munich).
Practical advice II

- In the interest of dominance avoid loaded words in experimental instructions.
- Keep control over as many factors as possible.
- Use written instructions (and take enough time to draft and re-check them carefully).
- Do not forget your hypotheses/expectations before you start with the experiment.
- Compare with other methods and use the most appropriate.

Note that the rules are not ironclad but usually deviations have to be justified.
Practical advice III

- Try to avoid confounds because subjects know each other (experiments in class; breaks; interaction before and after the experiment).
- Try to avoid fatigue and boredom.
- Use quizzes and control questions to make sure that subjects understand the task (more problematic: dry runs, examples and frame).
- Avoid any selection biases on the subject side.
- Plan enough independent observations.
Practical advice IV

- Interpret treatment differences and not absolute levels whenever possible.
- Choose variable levels in a way that make treatment effects possible (but do not fine-tune treatments with many pilot sessions). Mind Ronald Coase: ‘If you torture the data [design] long enough, Nature will confess.’
- Be sure to have a good justification for all of your design choices.
Practical advice V

Special issues:
- Strategy vector method
- Real effort
- Entitlements
- Questionnaires
- Team experiments
- Scoring rules
- Mixed methods: skin-conductance, heart rate, other physiological functions, fMRI, TMR etc.
Subjects

- Subject pool: university students, professionals, high-school students, kids, … (always consider opportunity costs)
- Effects of different fields of study
- Socio-economic determinants: issues of gender, age etc.
- Rewards: trading commissions, show-up fees, experimental currency units, bankruptcy problems, experiments with losses
- Duration of an experimental session
- Recruitment and maintaining subject history
Laboratory

- Computerized vs. ‘paper and pen’
- Laboratory facility issues to be discussed during laboratory excursion
- Computer programs: z-tree, rat image, several other programs.
- Random number generator
Chronology of a typical experimental project I

1. Research question

2. Design idea (Occam’s razor, treatment variables etc.)

3. Related literature

4. Check appropriateness of method and originality of research question (Final check: Does the design boil down to a test whether subjects can read and calculate properly or is there more to it?)

5. Details of the design (Be as specific as possible here and mind all the issues discussed thus far).
A typical experimental project II

6. Theoretic solutions, predictions, expectations, hypotheses

7. Plan dates, financial issues and make a check-list for all necessary preparations

8. Present your design to other students or in a design workshop

9. Instructions

10. List of procedure for the experiment (detailing the plan of action during the experiment)
A typical experimental project III

11. Pilot session(s)

12. Recruit subjects (recruiting lists)

13. Preparations directly before the experiment: lab setup, test equipment (Murphy’s Law), distribute instructions, pencils, calculators, dice, money, envelops, identification of subjects (with paper and pen), seat numbers, lots etc.

14. Registration of subjects upon arrival (also use a lab log)

15. Role of experimenters (‘single blind’ vs. ‘double blind’): conductors, monitors
A typical experimental project IV

16. Welcome participants (use the same wording in all the sessions) and enforce silence

17. Reading instructions

18. Handling queries from subjects

19. Start experiment (dry runs?)

20. Instructions for different parts of the experiment, record data

21. Termination of experiments (with infinite horizon)

22. End of experiment: Save data, pay out subjects, do not forget receipts
A typical experimental project V

23. Debriefing, update recruitment lists
24. Data analysis (see later)
25. Writing a paper
26. Presenting the paper
27. Publishing it, e.g., in *Econometrica*
28. Document your data to be able to provide the raw data and instructions to editors in an organized way.

Do not forget to have emergency plans (e.g., if you run out of money, if the network breaks down etc.).

(c) M. Kocher and M. Sutter
Game theory and experiments

- Benchmark solutions
- Indispensable for deriving predictions in interactive situations
- Was the starting point for many economists to decide to go to the laboratory.
- Does not imply selfishness and full rationality (although sometimes implicitly)
- Will be important throughout the course (you might want to refresh equilibrium concepts)
Experimental data vs. happenstance data

- Problems to control for motives, preferences and individual decisions with happenstance data
- Experiments as complements (to field data)
- Mixture: artificial field experiments, experiments with unusual subject pools, natural field experiments
Typical concerns against experiments in economics

- Used subject pools are special.
- Subjects do not take experiments seriously; money at stake is too small.
- Not enough observations.
- Participants are inexperienced (compared to decision-makers in the real world).

Most concerns are related to issues of external validity. They can be addressed empirically (see bargaining games).